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Abstract
We will discuss the maximum entropy production (MaxEP) principle based
on Jaynes’ information theoretical arguments, as was done by Dewar (2003
J. Phys. A: Math. Gen. 36 631–41, 2005 J. Phys. A: Math. Gen. 38 371–81).
With the help of a simple mathematical model of a non-equilibrium system,
we will show how to derive minimum and maximum entropy production.
Furthermore, the model will help us to clarify some confusing points and to
see differences between some MaxEP studies in the literature.

PACS numbers: 05.70.Ln, 65.40.Gr, 89.70.+c

1. Motivation

The maximum entropy production (MaxEP) is believed to be an organizational principle
applicable to physical and biological systems (see reviews in [10, 14, 15]). There are different
attempts to theoretically prove MaxEP. The most detailed mathematical studies were done in
two papers by Dewar [2, 3]. Dewar proposed different derivations of MaxEP by using the
maximum information entropy (MaxEnt) procedure by Jaynes [7, 8]. It is a similar argument
to the derivation of the Gibbs ensemble in equilibrium statistical mechanics, but with the
crucial difference that the information entropy is not defined by a probability measure on
phase space, but on path space.

In this paper, we will comment on the arguments by Dewar. We will do this with a
rather simple model which one can easily solve. The most important conclusion is that Dewar
discussed basically three different derivations, leading to at least three comments.

• The derivation in [2] leads in the linear response regime to the well-known minimum
entropy production (MinEP, [11, 12]) instead of MaxEP.

• The derivation in the main text of [3] works only in the linear response regime, and leads
to Ziegler’s MaxEP principle [20] or a ‘linear response’ MaxEP principle as used in e.g.
[21].
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• The derivation in the appendix of [3] contains some unresolved remarks that need further
clarification. We will see that this derivation is related to what we will call the ‘total
steady state’ MaxEP.

Furthermore, Dewar refers to the work by e.g. Paltridge [17] on climate systems. We
will demonstrate that Paltridge’s MaxEP hypothesis, which we will call ‘partial steady state’
MaxEP, is yet another principle which has different assumptions and applications than the
above-mentioned MaxEP principles. Hence, the ‘partial steady state’ MaxEP is unrelated
to the principles derived in [2, 3]. This will lead us to the important conclusion that there
are different MaxEP principles (or hypotheses) discussed in the literature, often leading to
some confusion. In fact, some studies [16, 19], in particular in fluid dynamics, discussed
even another hypothesis, what we will call the ‘non-variational MaxEP’. In the appendix, we
point at a rough analogy between Paltridge’s ‘partial steady state’ MaxEP and an equilibrium
system with MaxEnt. There are some theoretical problems associated with this analogy, but
nevertheless we present it to clarify the line of reasoning of this MaxEP hypothesis and its
possible information theoretical derivation.

2. The model

Let us consider a system of ι sites, with a real variable ni(t) (i = 1, . . . , ι) at each site. These
variables depend on the discrete time t = 0, 1, . . . , τ . At every timestep there is a random
flux between the sites. The flux fij = −fji from i to j depends on a real constant parameter
cij = cji , such that fij (t) = ±cij where the sign is stochastic. A microscopic path � is a
specific set of values +cij or −cij for every timestep and every i and j . The pathspace is the
set of all possible paths. The sign stochasticity gives a stochastic dynamics, such that for each
microscopic path we have

ni,�(t + 1) − ni,�(t) = −
∑

j

fij,�(t). (1)

The time averages depend on the path � and are denoted with an overline, e.g.
fij,� = 1

τ

∑
t fij (t). For each microscopic path, we assign a probability p� . The path

ensemble averages are written with brackets, e.g. 〈fij 〉 ≡ ∑
� p�fij,� .

To find the most likely probability measure on path space, we will use Jaynes’ information
theory formalism by maximizing the path information entropy

SI ≡ −
∑

�

p� ln p� (2)

under the constraints∑
�

p� = 1, (3)

∑
�

p�ni,�(0) = 〈ni(0)〉 , (4)

∑
�

p�fij,� = Fij , (5)

for some (or all) i and j . These constraints were used by Dewar [2] and are to be interpreted
as follows.
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(i) The first constraint is the normalization of the probability measure.
(ii) The second constraint means that at the initial time, the (path ensemble average) value of

ni is measured. ni,�(0) is not dependent on the complete path, but only on the initial time
value of the path.

(iii) The third constraint means that the time and path ensemble average of the flux from i to
j is measured to be the numerical value Fij .

The maximum of SI under the constraints results in

p� = 1

Z
exp A� (6)

with the path action

A� =
∑

i

λini�(0) +
∑
ij

ηij fij,�, (7)

with λi and ηij = −ηji Lagrange multipliers of constraints (4) and (5) respectively. By
deriving

〈ni(0)〉 = ∂ ln Z

∂λi

, (8)

and using (4), we get 〈ni(0)〉 = ni,�(0). This basically means that constraint (4) is trivially
satisfied due to (3), so we can take λi = 0. The reason behind this is that ni(0) did not depend
on the complete path.

The partition sum and the Lagrange multipliers ηij can be easily calculated:

Z =
∏
ij

Zij =
∏
ij

(
2 cosh

ηij cij

τ

)τ

, (9)

∂ ln Z

∂ηij

= Fij = cij tanh

(
ηij cij

τ

)
, (10)

Xij ≡ ηij

τ
= 1

cij

arcth
Fij

cij

. (11)

One can split the time and ensemble averaged fluxes F in a forward and a backward components

Fij = F +
ij − F−

ij (12)

= cij eXij cij

eXij cij + e−Xij cij
− cij e−Xij cij

eXij cij + e−Xij cij
, (13)

such that 2cijXij = ln
( F +

ij

F−
ij

)
(which is a well-known expression for the thermodynamic

forces for e.g. elementary chemical reactions [12]). Equation (11) are the constitutive
(phenomenological) equations of motion.

Note that our description of a stochastic non-equilibrium dynamical model is
mathematically equivalent with a statistical equilibrium ferromagnetic spin model. This can
be seen by interpreting the fluxes fij (t) as the values of the ferromagnetic spins sij,t . These
spins take values ±cij for every t. Instead of time, t is interpreted as a spatial coordinate,
so for every i and j we have a one-dimensional spin chain. The observed averaged fluxes
Fij correspond with the observed mean magnetizations mij for every spin chain. In the
equilibrium spin model, the multipliers η are basically inverse temperatures of the chains. In
the non-equilibrium interpretation, these multipliers are related to the thermodynamic driving
forces X which are conjugate to the fluxes F.
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As in [2], the entropy production (EP) of a microscopic path � will be defined as the
time antisymmetric (irreversible) part of the action, written as σ� ≡ Airr

�

/
τ . In our example,

the fluxes are all time antisymmetric and there is no symmetric (reversible) part of the action,
so we have σ� = ∑

ij Xijfij,� . The expectation value of the EP is (for convenience written
without brackets)

σ ≡
∑

�

p�σ� =
∑
ij

Xij

∑
�

p�fij,� =
∑
ij

XijFij , (14)

which is the classical expression for the EP as a bilinear form of forces and fluxes.
Plugging solution (6) into (2), we get the maximum information entropy as a function of

the forces

SI,max(X) = ln Z(X) − 〈A(X)〉 (15)

= ln


∏

ij

2 cosh(Xij cij )

exp(Xij cij tanh(Xij cij ))




τ

, (16)

≈ ln W(〈A(X)〉), (17)

with W(〈A(X)〉) being the ‘density of paths’. The number of paths with approximately the
average 〈A(X)〉 as path action.

Next we introduce the entropy curvature (or response) matrix as in [3]

Aij,kl(F ) ≡ ∂Xij

∂Fkl

(18)

= −∂2SI,max(X(F ))

τ∂Fij ∂Fkl

(19)

= δij,kl

1

c2
kl − F 2

kl

, (20)

with δij,kl being the Kronecker delta matrix (δij,kl = 1 iff i = k and j = l).
With the steepest descent approximation (i.e. a quadratic expansion around average F),

as in [3], we can calculate the probability distribution for the time averaged flux

p(f ) ∝ exp


−τ

2

∑
ij,kl

[fij − Fij ]Aij,kl(F )[fkl − Fkl]


 . (21)

Combining this expression with the fluctuation theorem [5, 6],

p(f )

p(−f )
= exp(2τσ (f )) = exp


2τ

∑
ij

Xijfij


 , (22)

and taking together the terms linear in f in the exponent, Dewar [3] derived another expression
for the constitutive equation (compare with (11)):

Xij =
∑
kl

Aij,kl(F )Fkl. (23)

Below, we will point at some hidden assumption in this derivation, clarifying the difference
between (11) and (23).
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As a final definition, we introduce the dissipation function as in [3],

D(F) ≡ 2
∑
ij,kl

Aij,kl(F )FijFkl. (24)

In the linear response regime near thermodynamic equilibrium, all forces X are small and
by (11) they are (approximately) linearly related to the fluxes as

Xij,lin ≈ Fij

/
c2
ij . (25)

In this regime, the two constitutive equations (11) and (23) become equal to (25), and the
dissipation function (approximately) equals the EP

Dlin(F ) ≈ σ(X(F ), F ). (26)

This is the basic set-up, as discussed in [2, 3]. Now we will give some comments on
Dewar’s arguments.

3. Comments

3.1. Linear response minimum entropy production

The first article [2] focused on the non-equilibrium steady state. Up till now, the forces Xij

(and the parameter values cij ) were supposed to be constants. However, in most systems,
they can change. Let us introduce a new, longer timescale T ≡ t/τ . The forces, fluxes and
parameters are approximately constant for short timescales 0 � t � τ , but they can slowly
change. Suppose the system X(T ), F (T ) attains a steady state for T → ∞. What happens
with the EP σ(T )?

As can be seen by the counting argument (17), we can calculate W in the linear response
regime for small X:

W(〈A(X)〉) ≈

∏

ij

(2 − (Xij cij )
2)




τ

≈

2ι2−ι − 2ι2−ι−1

∑
ij

(Xij cij )
2




τ

(27)

with this simplification, the path information becomes

SI,max(X) = ln(W) ≈ ln 2τ(ι2−ι) + τ ln

(
1 − σ

2

)
(28)

≈ ln 2τ(ι2−ι) − τσ

2
. (29)

The interpretation of this result is clear. The first term on the right-hand side is the logarithm
of the total number of paths (for a uniform probability distribution). The second term only
contains the EP. In [2], an important assumption was made in order to derive MaxEP. The
number of paths W should be an increasing function of the averaged action. This averaged
action is proportional to the EP, and hence one could claim that the higher the EP, the higher
SI,max. However, here we obtain the reverse, resulting in a minimization of the entropy
production (MinEP). Suppose there are additional constraints such as∑

ij

βij,eXij (T ) = X0
e , (30)

with X0
e being constant ‘external’ forces. An example of this kind of constraint on the forces

is the Kirchoff loop law in electrical networks. Minimizing the EP σ under these constraints,
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and using the linearized constitutive equations (25), one can find (for T → ∞) the unique
steady state (written with *), which for site i is given by∑

j

F ∗
ij = 0 (31)

(as follows from (1)). We conclude that the derivation in [2] can be used to derive MinEP
rather than MaxEP, because the assumption that W is a decreasing function of σ is valid in
our model1.

3.2. Ziegler’s and linear response MaxEP

Let us now comment on [3]. Ziegler [20] has proposed a MaxEP principle to derive the
constitutive equations. It only works for systems in the linear response regime (and some
highly restricted exceptional cases mentioned in [20], but we will not discuss them here). It is
variational principle, with Lagrangian which is to be maximized:

LZiegler(F ) ≡ D(F) + γ
(
D(F) − 2

∑
X0

ijFij

)
. (32)

The last term is a constraint with Lagrange multiplier γ . In this variation, X0 is kept fixed. It
is this ‘maximum dissipation’ principle that was explained in [3], equation (22).2

It is important to keep in mind that (contrary to what is claimed in [3]) the constitutive
equations derived from the above Lagrangian are only compatible with (18) and (23) when∑

ij Fij
∂Aij,kl

∂Flm
= 0. It is clear that this restriction does not hold in the nonlinear regime of

our model with constitutive equations (11). Only in the linear response regime (when A is a
constant matrix, leading to (25)) is (23) compatible with (11). The reason why the derivation
in [3] only works near equilibrium (i.e. in the linear response regime) is due to the use of a
steepest descent approximation in (21). This works only when the fluxes fij are close to their
expectations Fij . But using the fluctuation theorem (22), also −fij should be close to Fij .
This is only possible when Fij is small.

The derivation in [3] has also another application, as one can add more constraints to
the above Ziegler’s principle in order not to find the constitutive equations, but to find the
unique near-equilibrium steady state. This is also a MaxEP principle, which we will name
‘linear response MaxEP’ because it only works in the near-equilibrium linear response regime3.
Zupanović et al [21] discussed this principle with an electrical network as an example, whereby
the forces are the voltages. The Lagrangian generally looks like

Llinear = D(F) + γ0

(
D(F) −

∑
e

X0
eFe

)
+

∑
e

γe


∑

ij

βij,eFij − Fe


 . (33)

The second term on the right-hand side is the constraint which says that in the steady state
the power influx into the system due to the fixed external driving forces X0

e (with conjugate
external fluxes Fe that do not contribute to the dissipation D(F)) is completely dissipated. In
[21], this fixed external driving force is the applied voltage of a battery, and Fe is the current

1 This decreasing behaviour is not general: it might be invalid in the nonlinear response regime. And even in the
linear regime there are systems (with e.g. time-reversible odd degrees of freedom, see [1]) that do not show this
behaviour.
2 In [3], a ‘dual’ version is applied, switching the roles of the forces and the fluxes. It is mathematically equivalent
with our formulation.
3 As was correctly noted in [3], this principle should not to be confused with the linear response minimum entropy
production principle [12], which uses other constraints resulting in a minimum of the EP at the near-equilibrium
steady state.
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through this battery. The last term (with constants βij,e) is a steady state constraint on the
fluxes. In the electrical network example in [21] it is Kirchoff’s current law.

Note that, as in the previous comment, we can use a counting argument to derive Ziegler’s
or linear response MaxEP. In the near equilibrium regime we have (26), and W(σ) = W(D)

becomes maximal under the constraints in (32) or (33).

3.3. Partial steady state MaxEP

In his two papers, Dewar also refers to the work by Paltridge that gives experimental validation
of the MaxEP principle. The basic idea of the climate model of Paltridge is similar to the idea
in e.g. [4] or [9] for chemical reactions. Paltridge divides the universe in compartments (sun,
equator, pole and deep space) with energy fluxes between them, just as the chemical reaction
system of ATP synthase in [4] consists of compartments (the different molecular states) with
particle fluxes between them. In the Paltridge model, there is atmospheric heat transport from
equator to pole, and its transport coefficient is a priori not known. This coefficient is guessed
by maximizing the EP associated with the atmospheric heat transport processes. The other
processes and parameters related to the heat radiation (e.g. from sun to equator) are a priori
known, and the earth system is supposed to be in the steady state. Note that not the total
EP is maximized. In [4], a parameter κ and the flux F(κ) between the compartments O:ATP
and O:P.ADP are unknown. The most likely values for this parameter and flux are derived by
maximizing the corresponding EP (not the total EP of all reactions), knowing that the system
is in the steady state.

Making the analogy with our model, we can take a system consisting of three
compartments (sites with ι = 3), with parameters c13 = 0 and c12 	= 0 a priori known.
As the atmospheric heat transport coefficient or the κ parameter, c23 is unknown, and it is
guessed by maximizing the corresponding partial EP σ23 = X23F23 under the steady state
conditions. This explains the name ‘partial steady state’ MaxEP. The steady state conditions
are e.g.

X12 + X23 = X0
e (34)

(as a specific example of (30)) with X0
e known and fixed, and

F ∗
12 = F ∗

23. (35)

(This is the steady state condition for the middle site 2, as a specific example of (31). The
total system, including sites 1 and 3, is not in the steady state, except when the total system is
in equilibrium.)

Under these constraints, the partial EP can be written as

σ ∗
23 = F ∗

23

(
X0

e − 1

c12
arcth

F ∗
23

c12

)
. (36)

The maximum gives a complicated expression of F ∗
23,max

(
X0

e , c12
)

as a function of the known
parameters. This also gives c23,max

(
X0

e , c12
)
. Although it is believed [9, 15, 17] that this

principle is applicable to the far-from-equilibrium regime, we can also look at the linear

response regime, where it is easy to calculate that c23,max = c12 and F ∗
23,max = c2

12
2 X0

e .
As mentioned above, [2] results in minimum EP and [3] results in Ziegler’s or linear

MaxEP, and these principles are different in nature than Paltridge’s MaxEP principle discussed
here. In the appendix, we give an analogy of our model with an equilibrium model. Although
theoretically not very rigid, the discussed analogy might serve as a general guideline to clarify
the partial steady state MaxEP. For the moment, it is important to stress that this MaxEP
principle remains an unproven hypothesis with a lot of controversy and unsolved questions
about the necessary conditions, requirements and ranges of application.
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3.4. Total steady state MaxEP

In the appendix of [3], Dewar gives a third information theoretical derivation for MaxEP. An
important assumption is made. The total dissipation or (more generally) the total entropy
production should have an upper bound σ(X(F ), F ) � σmax under some prior information
C (such as the knowledge that the system is in the steady state (34)–(35)). Looking at the
example in section 3.3, in the steady state in the linear response regime, the EP becomes

σ ∗ = X0
eF

∗
12 = c2

12c
2
23

c2
12 + c2

23

(
X0

e

)2 � c2
12

(
X0

e

)2
. (37)

The maximum is attained for c23 → ∞. This is not compatible with c23,max = c12 obtained by
maximizing the entropy production of the unknown flux in section 3.3. As we varied the total
EP in the steady state with respect to an unknown parameter, this explains the chosen name
‘total steady state MaxEP’.

One can place questions about the choice of constraints used in Dewar’s appendix
derivation. Why not add the inequality constraint σ � 0 as a consequence of (22), or
the steady state constraints (34)–(35)? And is the obtained probability measure a maximum of
the information entropy? We will not deal with these questions here, as they should be taken
up in future work.

3.5. Non-variational MaxEP

At the end of his paper, Dewar [3] mentions the Rayleigh–Bénard convective fluid system.
Others (e.g. [16, 19]) have made a MaxEP hypothesis for other fluid systems. We will call this
principle the ‘non-variational’ MaxEP, because contrary to the above-mentioned principles, it
is a selection principle rather than a variational principle varying the EP with respect to some
continuous variable.

Suppose a system has a highly nonlinear dynamics, resulting into the possibility of having
a discrete set of steady states. The hypothesis claims that the selected state (e.g. the most
stable) is the one with highest EP of all the steady states. For example, in the Rayleigh–Bénard
system, the steady states are a heat conduction state, a heat convection state and perhaps other
(turbulent) states. For temperature gradient values beyond a critical transition point, the heat
convection state is most stable, and it has the highest heat transport and the highest EP (see
also [18]).

Making the analogy with our model, we will take a time dependence cij (T ) as in
section 3.1. This might give a nonlinear dynamics, resulting into different steady states
for the fluxes F ∗

ij . The hypothesis will be proven when the most (asymptotically) stable state
has the highest EP. Up till now, no proof of this hypothesis is known, and it is doubtful whether
it is generally true.

3.6. Microscopic MaxEP

As a smaller final comment, our model demonstrates another kind of MaxEP principle, different
from the above principles. One might look for the microscopic path which has the highest
probability (6). In our model, we can easily see that this path should have the maximum value
of the action A�,max = τ

∑
ij cij |Xij |. This corresponds with a maximum of the microscopic

path EP σ� . This microscopic path EP does not necessarily result in a maximum of the
path-ensemble averaged EP σ . Furthermore, there are some doubts that this ‘microscopic
MaxEP’ is generally true (Maes, private communication). We have seen that the action A� in
our model is basically the time-antisymmetric part, which is the EP [13]. But in more general
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descriptions for other systems, there is also a time-symmetric part of the action [13]. When
this part also depends on the path, the microscopic MaxEP might be invalid.

Acknowledgments

The author wishes to thank R Dewar, C Maes and an anonymous referee for helpful comments.

Appendix. A MaxEP–MaxEnt analogy

In section 3.3, we have described the partial steady state MaxEP principle with a simple
example. The intuition of Dewar and others is that this MaxEP principle can be derived
by maximizing the path information entropy in non-equilibrium statistical mechanics, the
same way that Jaynes [7, 8] derived the Gibbs probability measure in equilibrium statistical
mechanics, by maximizing the phase-space information entropy. This method is called
MaxEnt.

Here we will discuss an analogy of this non-equilibrium MaxEP system with an
equilibrium MaxEnt system, in order to clarify the line of reasoning used in this MaxEP
principle. The analogy below is very rough, and definitely not a proof for MaxEP. There are
a lot of theoretical problems with it, so one should not take it to serious.

The non-equilibrium MaxEP. Take a system consisting of three compartments with two
fluxes between them. Let us take the linear response regime, where these fluxes Fij have
conductances Cij = c2

ij relating the forces Xij = Fij /Cij . Suppose the conductance C23 is
unknown. This means that also the steady state values (using (34)–(35)) of Xij and Fij are
unknown. MaxEP claims that they can be derived by maximizing the partial steady state EP
(36) σ ∗

23 = F ∗
23

(
X0

e − F ∗
23

/
C12

)
.

The equilibrium MaxEnt. Consider a closed system (energetically coupled with an
environment), consisting of two closed boxes which are also energetically coupled. For
simplicity, the volumes and heat capacities of the two boxes are equal to unity. The two boxes
contain an ideal gas with particle numbers N1 and N2 at temperatures T1 and T2 respectively.
Suppose that a priori only T1 and the total number of particles N0 = N1 + N2 are known and
constant. The other variables and parameters are derived by MaxEnt.

The following table represents the analogy schematically.

MaxEP MaxEnt

Fluxes: F12, F23 Energies: E1, E2

Conductances: C12, C23 Temperatures: T1, T2

Forces: X12, X23 Particle numbers: N1, N2

Linear response approximation: Ideal gas approximation:
Xij = Fij /Cij Ni = Ei/Ti

Steady state: F ∗
12 = F ∗

23 Energy equality: E∗
1 = E∗

2
Non-equilibrium constraint: Particle conservation:

X12 + X23 = X0
e is constant N1 + N2 = N0 is constant

Unknown: Fij , C23, Xij Unknown: Ni, T2, Ei

MaxEP→ C23,Max = C12 MaxEnt→ T2,Max = T1

F ∗
ij,Max = X0

e C12
2 E∗

i,Max = N0T1
2
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Of course, one can always take a system with different conductances, so MaxEP is not
generally true. A similar possibility occurs in the well-known equilibrium statistical physics.
When the two boxes in the MaxEnt system are energetically isolated, it is also not necessary
that T2 = T1. As energetic coupling is a necessary condition for temperature equilibration
in the MaxEnt formulation, there should be an analogous necessary condition in the non-
equilibrium system in order that MaxEP is valid. Once one can find this kind of ‘coupling’ in
the non-equilibrium system, and once one can demonstrate that the path information entropy
is (perhaps under some further restrictions) related to the partial EP corresponding with an
unknown parameter, then one can give a best guess for this parameter. In this way, perhaps
the best guess for e.g. the atmospheric heat conduction parameter in the Paltridge model is
derived by maximizing the atmospheric EP.

The above discussion might give a hint to explain why the experimental atmospheric heat
transport is close to the MaxEP value. Dewar [3] correctly pointed out that the predictive
success of MaxEnt hinges on having correctly identified the constraints. As the temperature
equality in the two box system depends on the energetic coupling due to the absence of internal
constraints (e.g. dividing isolating walls), the MaxEP heat transport value might perhaps also
depend on some coupling due to the absence of constraints (e.g. the conductances should be
sufficiently variable). We end this appendix by repeating that the above ideas are still very
speculative.
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[4] Dewar R, Juretić D and Županović P 2006 Chem. Phys. Lett. 430 177–82
[5] Evans D J, Cohen G D and Morriss G P 1993 Phys. Rev. Lett. 71 2401
[6] Evans D J and Searles D J 2002 Adv. Phys. 51 1529–85
[7] Jaynes E T Phys. Rev. 106 620

Jaynes E T 1957 Phys. Rev. 108 171
[8] Jaynes E T 2003 Probability Theory: the Logic of Science ed G L Brentthorst (Cambridge: Cambridge University

Press)
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